

Home

Search Collections Journals About Contact us My IOPscience

Isotropic and anisotropic magnetoelastic interactions in heavy and light RCo_2 Laves phase compounds

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 6 6699 (http://iopscience.iop.org/0953-8984/6/33/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 20:20

Please note that terms and conditions apply.

Isotropic and anisotropic magnetoelastic interactions in heavy and light RCo₂ Laves phase compounds

E Gratz[†], A Lindbaum[†], A S Markosyan[‡], H Mueller[†] and A Yu Sokolov[§] [†] Institute for Experimental Physics, TU Vienna, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria

‡ Physics Department, M V Lomonosov Moscow State University, 119899 Moscow, Russia § Moscow Institute of Radioengineering Electronics and Automation, Prospekt Vernadskogo 54, 117454 Moscow, Russia

Received 18 January 1994, in final form 16 May 1994

Abstract. The thermal expansion and anisotropic magnetostriction of the RCo₂ Laves phases were studied in the temperature range 4-500 K using the x-ray powder diffraction method. In the heavy RCo₂ the magnetic moment of the itinerant d electron subsystem derived from the magnetovolume effect was found to fit well with the magnetization curve of YCo₂. A pronounced paraprocess above the metamagnetic transition has been observed when increasing the f-d exchange field. The type and temperature variation of the distortion of the cubic unit cell of the three compounds PrCo₂, NdCo₂ and SmCo₂ have been studied in detail. The corresponding magnetostriction constants λ_{111} or λ_{100} were calculated. At 4 K the following values have been obtained: PrCo₂, tetragonal distortion, easy axes (100), $\lambda_{100} = -3.4 \times 10^{-3}$; SmCo₂, rhombohedral distortion, easy axes (111), $\lambda_{111} = -4.6 \times 10^{-3}$; NdCo₂, tetragonal distortion and easy axes (110) for T < 42 K with $|\lambda_{111}| = 1.9 \times 10^{-3}$ and $\lambda_{100} = -4.0 \times 10^{-3}$.

1. Introduction

Much attention is paid to the rare earth (RE) Laves phase compounds with cobalt RCo_2 for several reasons; the d magnetism instability and giant magnetostriction, both volume and anisotropic, which have been intensively studied during the last fifteen years [1-3]. The simple magnetic as well as crystallographic structures make possible a clear interpretation of most experiments carried out on the RCo_2 compounds.

The magnetic instability causes an itinerant electron metamagnetism of the d-electron subsystem in RCo₂, i.e. a field-induced magnetic phase transition from the paramagnetic to ferromagnetic state. In the compounds with non-magnetic rare earths, YCo₂ and LuCo₂, which are itinerant Pauli paramagnets, the transition was recently observed by direct M(H) measurements at critical fields H_M equal to 69.5 T and 74 T, respectively [4]. With magnetic rare earths these compounds are collinear ferrimagnets, the itinerant d subsystem being ordered due to the f-d intersublattice exchange magnetic field H_{fd} , which exceeds H_M . A number of experiments were carried out in different substituted RCo₂ compounds with the aim of outlining the metamagnetic character of the d subsystem, and the results were well explained using the simple phenomenological model of itinerant metamagnetism based on the Landau theory [2, 5].

Due to a large magnetovolume effect which accompanies the magnetic order of itinerant electron systems, the thermal expansion measurements serve a useful tool to study the d-electron magnetism in the RCo₂ compounds. These measurements are to some extent

complementary to the magnetic measurements. The value of the magnetovolume anomaly given by: $\omega_s = (V_m - V_0)/V_0$ (where V_m and V_0 denote the crystal volume in the magnetic and non-magnetic state, respectively) can be related in a first approximation to the d-electron magnetic moment μ_d by

$$\omega_{\rm s} = k C \mu_{\rm d}^2. \tag{1}$$

Here k is the isotropic compressibility and C is the magnetovolume coupling constant. Although equation (1) does not include a possible contribution to ω_s caused by the RE subsystem, it is generally accepted that with this expression the variation of the d magnetic moment μ_{Co} in RCo₂ can satisfactorily be described [2].

In heavy RCo₂, there are some doubts as to whether μ_{Co} takes a value around $1\mu_B$, which clearly does not coincide with the μ_{Co} value of YCo₂ and LuCo₂ deduced from magnetization measurements at fields higher than H_M (about 0.5 μ_B/Co) [4]. It seems that above the metamagnetic phase transition the compounds are still far from being saturated. The agreement of μ_{Co} data on the heavy RCo₂ compounds with the high-field magnetization data on YCo₂ is poor; therefore the data do not allow one to predict the behaviour of YCo₂ in the ferromagnetic state above H_M correctly [4, 6].

The RCo₂ compounds, as well as other cubic Laves phases RMe₂ (with Me = Fe, Ni and Al) exhibit an anisotropic magnetostriction within the ordered state, which at 4.2 K exceeds the value of 10^{-3} [2, 7–9]. The magnetostriction constants obtained by both magnetic and x-ray methods performed on the RFe₂ compounds are in good agreement [10]. Unfortunately, there are no measurements available for the field-induced deformation carried out on single crystals of RCo₂. This is because the preparation of RCo₂ single crystals large enough for this kind of experiments is very difficult.

On the other hand, x-ray measurements on powdered samples enable us to determine the anisotropic magnetostriction constants by measuring the lattice parameters in the magnetic ordered state. For a cubic crystal, the magnetostriction in any direction given by the direction cosines β_i can be expressed by

$$\lambda = (3/2)\lambda_{100} \sum_{i} \left(\alpha_i^2 \beta_i^2 - 1/3 \right) + 3\lambda_{i11} \sum_{i < j} \alpha_i \alpha_j \beta_i \beta_j \tag{2}$$

where α_i represent the direction cosines of the magnetization. Here the magnetostriction constants λ_{100} (:= λ_{001}) and λ_{111} are defined as the deformations along the (001) and (111) directions with the magnetization parallel to (001) and (111), respectively. The spontaneous magnetoelastic distortion can be connected with the magnetostriction constants by equation (2) taking α_i as the easy axis of magnetization and β_i as the direction (*hkl*) corresponding to the measured x-ray reflection peak. In RCo₂ with heavy rare earths, the magnetostriction constant λ_{111} was found to be completely determined by the RE contribution and follows well the single-ion model predictions, whereas in λ_{100} a large contribution from the Co subsystem was observed by experiments on GdCo₂ [11].

In the present investigation we have studied the thermal expansion of nearly all the RCo₂ compounds and the behaviour of the d magnetic moment as a function of the effective f-d exchange field H_{eff} has been discussed. We have extended the studies of the anisotropic magnetostriction to light RCo₂ with R = Pr, Nd and Sm. TmCo₂ which has the lowest value of T_c (about 4 K) in the RCo₂ series was not studied in detail until now. Therefore we also studied the behaviour of TmCo₂ by investigating the related pseudobinaries Tm_{1-x}Gd_xCo₂, in which the Gd contribution to the anisotropic magnetostriction is negligible compared to the Tm contribution.

The crystal cell parameters of polycrystalline RCo₂ samples were studied in the temperature range 5-500 K. A conventional Siemens D500 x-ray powder diffractometer with Co K α radiation was used for scanning the (440) and (222) reflection peaks. For calibration Ge powder was used as internal standard. Details of the sample preparation have already been given elsewhere; therefore we do not describe them here, instead referring the reader to [2,7].

2. Experimental results

2.1. Heavy rare-earth compounds

In figure 1 the temperature dependence of the normalized (to 300 K) cubic lattice parameter of the heavy RCo₂ compounds (R = Y, Gd, Tb, Dy, Ho, Er, Lu) is presented. The results are in good agreement with those obtained in earlier investigations using different experiments [2]. They clearly show the occurrence of positive magnetovolume anomalies below the corresponding Curie temperature. For comparison the a(T) dependences for the two isostructural non-magnetic RCo₂ compounds YCo₂ and LuCo₂ are included in this figure. As can be seen, these paramagnetic compounds fit well the uniform behaviour of the whole series for $T > T_c$. The important conclusion, which can be drawn from figure 1, is that there is a clear diminution of the magnetovolume anomaly at 4 K when going from Gd towards Er.

Figure 1. The normalized (to 300 K) cubic lattice parameter of the heavy RCo₂ compounds as a function of temperature. Below T_c the average value of $a = \sqrt[3]{V}$ (V is the unit cell volume) is drawn. The arrows indicate the Curie temperatures.

It should be noted that there is a large anisotropic deformation of the cubic unit cell in all these compounds observable which is in agreement with our previous results, both in the sign and value (for details see [2, 7]).

Figure 2. The normalized cubic lattice parameter of the $Tm_{1-x}Gd_xCo_2$ compounds as a function of temperature. Below T_c (arrows) the average value of $a = \sqrt[3]{V}$ (V is the unit cell volume) is drawn. The inset shows the concentration dependence of the magnetovolume effect.

In figure 2 the temperature dependence of the lattice parameters of the pseudobinary $Tm_{1-x}Gd_xCo_2$ compounds is shown. The volume anomaly existing below T_c increases with increasing Gd concentration, i.e. it exhibits a pronounced dependence on the RE atomic number. The inset in figure 2 shows the concentration dependence of ω_s for the $Tm_{1-x}Gd_xCo_2$ system at 4 K. The linear extrapolation gives, for $TmCo_2$, a value of $\omega_s = 1.6 \times 10^{-3}$. At low temperatures, when the long-range magnetic order occurs in this Tm-based compound, a rhombohedral distortion of the cubic unit cell appears, indicating the [111] direction as the easy axis of magnetization. Figure 3 shows the temperature dependence of the lattice parameters of these pseudobinary systems in the hexagonal description versus temperature. As can be seen, the degree of distortion diminishes with increasing temperature.

2.2. Light rare-earth compounds

The temperature dependence of the lattice parameters of $PrCo_2$, NdCo₂ and SmCo₂ is shown in figures 4–6. Below T_c all the compounds exhibit a large increase of the volume, however this effect is smaller than that of the heavy RCo₂ compounds (see figure 1). This can be explained by the lower values of the Co moment observed in the light RCo₂ compounds. As in the case of the heavy RCo₂ compounds, the crystal symmetry is lowered below the Curie temperature indicating large anisotropic magnetoelastic interactions. The character of the unit cell distortion is determined by the orientation of the easy axis of magnetization in all cases.

In SmCo₂ with the $\langle 111 \rangle$ easy axes, the distortion is rhombohedral and the value of the magnetostriction constant λ_{111} derived from equation (2) achieves -4.6×10^{-3} at 4 K. In contrast, PrCo₂ shows a tetragonal distortion in the ordered state in accordance with the easy

Figure 3. The temperature dependence of the lattice parameters of the distorted unit cell of $Tm_{1-x}Gd_xCo_2$ below T_c (arrows) in the hexagonal description.

Figure 4. The temperature dependence of the cubic (a) and tetragonal (a_t and c_t) lattice parameters of PrCo₂. Below T_c (arrow) the average value of $a = \sqrt[3]{V}$ is drawn (full circle).

axes (100). The low-temperature magnetostriction constant λ_{100} derived from equation (2) is -3.4×10^{-3} .

In NdCo₂, the easy axis below T_c is of the (100) type; however, it changes to (110) at about 42 K. Accordingly, we observed a tetragonal distortion in this compound in the region $42 < T < T_c$, which turns into an orthorhombic one below 42 K. In the orthorhombic phase

Figure 5. The temperature dependence of the cubic (a) and hexagonal (a_h and c_h) lattice parameters of SmCo₂. Below T_c (arrow) the average value of $a = \sqrt[3]{V}$ is drawn (full symbols).

Figure 6. The temperature dependence of the cubic (a), tetragonal (a_t and c_t) and orthorhombic (a_r , b_r and c_r) lattice parameters of NdCo₂. Below T_c (arrow) the average value of $a = \sqrt[3]{V}$ is drawn (full symbols).

it is possible to evaluate both magnetostriction constants λ_{111} and λ_{100} from equation (2) in the form expressed by the orthorhombic lattice parameters

$$\lambda_{100} = \frac{2\sqrt{2}}{3c_{\rm r}} (a_{\rm r} + b_{\rm r} - c_{\rm r}\sqrt{2}) \qquad \lambda_{111} = \frac{2\sqrt{2}}{3c_{\rm r}} (a_{\rm r} - b_{\rm r}). \tag{3}$$

At 4 K we found the following values: $|\lambda_{111}| = 1.9 \times 10^{-3}$ and $\lambda_{100} = -4.0 \times 10^{-3}$. However, because of the symmetrical splitting of the [440] and [440] reflection peaks and their equal intensities, it was impossible to determine the sign of λ_{111} . We can assume

Figure 7. The anisotropic magnetostriction constants λ_{100} (full symbols) and λ_{111} (open symbols) of PrCo₂, NdCo₂ and SmCo₂ as a function of temperature. The arrows indicate the Curie temperatures.

3. Discussion

The results obtained from x-ray measurements enable us to determine the magnetic moment μ_{Co} of the Co atoms in the heavy RCo₂ compounds and its variation as a function of the f-d exchange field. As the values of μ_{Co} determined by different methods vary in a wide range between 0.7 and 1.3 $\mu_{\rm B}$ [13–20], for calibration we used the magnetization data on GdCo₂, for which all the previously performed experiments give approximately the same value (1.03–1.07 $\mu_{\rm B}$, with $\mu_{\rm Gd} = 7 \ \mu_{\rm B}$) [21–24]. Thus the magnetoelastic coefficient kC in equation (1) was taken to be equal to 8.14 ×10⁻³ $\mu_{\rm B}^{-2}$ /Co.

The molecular field H_{fd} acting on the d-electron subsystem RCo₂ can be taken as $\lambda_{fd}\mu_R$. There is, however, some uncertainty in the values of λ_{fd} (or I_{fd}) given in different works, which arises from several fitting parameters used in calculations [25–27]. Here we used the recent data on the molecular field coefficients λ_{fd} found for ErCo₂ and GdCo₂ from the observations of field-induced non-collinear structures and metamagnetic transitions in ErCo₂ ($\lambda_{fd} = 20 \text{ T}/\mu_B^{-1}$) and in the $Y_{1-r}Gd_t(Co_{1-x}Al_x)_2$ compounds ($\lambda_{fd} = 64 \text{ T}/\mu_B$) [28,29]. This method does not need any additional adjustable parameter and gives high accuracy for λ_{fd} . As the exchange integrals I_{fd} of these two components have proven to be equal to each other ($-1.97 \times 10^{-22} \text{ J}$), we used the same value for the whole series with heavy rare earths from Gd to Er, and taken μ_R to be gJ. However, smaller values can be observed mainly in Tm-based compounds [30, 31]. For the pseudobinary Tm_{1-x}Gd_xCo₂ compounds we calculated H_{fd} using the simple molecular field approach

$$H_{\rm fd} = (1 - x)\lambda_{\rm TmCo}\mu_{\rm Tm} + x\lambda_{\rm GdCo}\mu_{\rm Gd}.$$
(4)

6706 E Gratz et al

The values of μ_{Co} versus H_{fd} thus obtained are depicted in figure 8 together with the magnetization curve of YCo₂ measured under ultra-high pulsed magnetic fields [4]. For comparison μ_{Co} from single-crystal magnetization data on ErCo₂, HoCo₂ and TbCo₂ [16, 17, 20] are included in that figure. The x-ray data correspond well with the direct magnetization measurements on YCo₂. As can be seen, the M(H) curve of YCo₂ shows a large paraprocess contribution. We refer the progressive increase of μ_{Co} for the RCo₂ compounds towards GdCo₂ also to that paraprocess.

Figure 8. The variation of the d-electron magnetic moment μ_{Co} versus H_{fd} derived from x-ray powder diffraction data of RCo₂ (full circles) and Tm_{1-x}Gd_xCo₂ (open triangles). The full triangle shows the extrapolated value for TmCo₂, the open circle is the value for Tm(Co_{0.88} Al_{0.12})₂ [27]. The open squares represent single-crystal magnetization data taken from the literature [16, 17, 20]. The solid line represents the metamagnetic transition in the magnetization curve of YCo₂ [4]. The broken line is drawn as a guide for the eyes.

Note that μ_{Co} for TmCo₂ evaluated from the extrapolated value of ω_s (see the inset in figure 2) should be considered as the upper limit, i.e. its real value cannot exceed 0.44 μ_B . The open circle in that figure shows μ_{Co} derived from magnetization measurements [30] of the Tm(Co_{0.88}Al_{0.12})₂ compound in which the d magnetic moment is stabilized by the Al substitution. This value is in good agreement with the estimated μ_{Co} for TmCo₂. The comparison with the magnetization curve of YCo₂ clearly shows that the molecular field H_{fd} in TmCo₂ is very close to the critical field of the metamagnetic transition. It should be noted that in equation (1) the spin fluctuation contribution to ω_s is neglected; furthermore the molecular field approximation used for the calculation of H_{fd} is also an essential simplification. In our opinion the observed agreement between x-ray and magnetic data is due to a temperature variation of the paramagnetic spin fluctuation amplitude which is constant for the whole heavy RCo₂ series. This allowed us to derive ω_s from the normalized a(T) dependences without using the a(T) behaviour of non-magnetic isostructural compounds.

Now we consider the anisotropic magnetoelastic properties of the studied compounds. For heavy RCo_2 it was shown that the magnetoelastic distortion along the (111) axes is entirely determined by the rare-earth ions, i.e. the Co contribution is negligible [2]. The

rhombohedral distortion observed in the $\text{Tm}_{1-x}\text{Gd}_x\text{Co}_2$ systems (the Gd^{3+} ions are in the S state with L = 0), should be due to the Tm contribution. Below T_c the exchange interaction tends to align the strongly asymmetrical 4f shells of the Tm^{3+} ions (via L-S coupling) giving rise to an anisotropic lattice response. We can estimate λ_{111} for TmCo_2 by a linear extrapolation of λ_{111} of the Gd substituted compounds towards x = 0. This procedure (figure 9) gives a value of $\lambda_{111} = -4.2 \times 10^{-3}$ for TmCo_2 .

Figure 9. The concentration dependence of λ_{111} of the $Tm_{1-x}Gd_xCo_2$ compounds at 4 K.

In the scope of the single-ion model one can represent the magnetostrictive constants of a cubic crystal by the elastic (C_{11}, C_{12}, C_{44}) and magnetoelastic (B_1, B_2) coupling constants in the form

$$\lambda_{100} = \frac{2}{\sqrt{6}} \frac{B_1}{C_{11} - C_{12}} \langle O_2^0 \rangle_T \qquad z - \text{axis } \| M \| \langle 001 \rangle$$

$$\lambda_{111} = \frac{B_2}{4C_{44}} \langle O_2^0 \rangle_T \qquad z - \text{axis } \| M \| \langle 111 \rangle.$$
(5)

Here $\langle O_2^0 \rangle_T$ is the thermal averaged Stevens operator O_2^0 . Considering B_i to be proportional to $\langle r_{4f}^2 \rangle \alpha_J$ and assuming $\langle O_2^0 \rangle_0 K = \langle M_j = J | O_2^0 | M_J = J \rangle = J(2J-1)$ (saturated value) one can express the magnetostriction constants in the form [32]

$$\lambda_{100,111} = D_{1,2} \langle r_{4f}^2 \rangle \alpha_J J (J - \frac{1}{2}) \tag{6}$$

where D_1 , D_2 are coefficients that are approximately the same for all RCo₂.

Equation (6) was successfully used in [2] for the analysis of λ_{111} in the heavy RCo₂ compounds. Its variation with RE was found to follow the single-ion prediction. The sign changes from positive to negative between HoCo₂ and ErCo₂ due to the change of the sign of the Stevens coefficient α_J . Although for TmCo₂ the crystal field splitting of the Tm³⁺ ion levels cannot be considered as a small effect compared to the exchange field, one can see that the estimated value for TmCo₂ is in good agreement (with respect to its sign and value) with the single-ion prediction for the heavy RCo₂ compounds according to equation (6) [2].

The same limitation for TmCo₂ holds for the light RCo₂ compounds, in which the ground state also cannot be considered to be $|M_J = J\rangle$. There the situation is even more complex because of mixing effects from the higher J multiplets. Note that the easy axes in PrCo₂, NdCo₂ and SmCo₂ do not coincide with those of their RFe₂ analogues in the low-temperature region; NdCo₂ and SmFe₂ exhibit spin reorientation phase transitions. However, some qualitative comparisons are worthwhile. Also, in the case of the light RCo₂ λ_{111} seems to follow the single-ion model better than λ_{100} , λ_{111} (SmCo₂)/ λ_{111} (NdCo₂) = -2.4 (-2.8 according to formula (6)) and λ_{100} (PrCo₂)/ λ_{100} (NdCo₂) = 0.85 (3.07 according to formula (6)). The ratio for λ_{111} is close to that for SmFe₂ ($\lambda_{111} = -4.9 \times 10^{-3}$ [33]) and NdFe₂ ($\lambda_{111} = 2.0 \times 10^{-3}$) [10]. One can assume that in RCo₂ the contribution from higher multiplets of the RE³⁺ ions to λ_{111} is smaller than that to λ_{100} . On the other hand, the Co contribution to λ_{100} can also cause the agreement of λ_{100} to be less good than that of λ_{111} .

4. Conclusion

The magnetovolume effect of the heavy RCo₂ compounds follows well the regularities in the variation of the magnetic moment of the itinerant d subsystem, μ_{Co} , including its metamagnetic behaviour. The magnetization curve for YCo₂ fits the data derived from the x-ray measurements, thus confirming the large paraprocess of M_d after the metamagnetic transition has occurred.

Like the heavy RCo_2 compounds, the light RCo_2 Laves phases also exhibit a large anisotropic magnetostriction at low temperature, which causes a lattice distortion according to the easy axis direction. The magnitude and character of the distortions allow us to attribute the anisotropic magnetoelastic interaction to the single-ion mechanism of the crystal field effect on the R^{3+} ion.

Acknowledgments

This work was partly supported by the Austrian FWF Projects P8913 and P9203 and the Russian Fundamental Science Foundation Project Nr 93-02-2006. One of us, A S Markosyan, received financial support for staying in TU Vienna.

References

- [1] Levitin R Z and Markosyan A S 1988 Usp. Fiz. Nauk. 155 623 (Engl. Transl. 1988 Sov. Phys.-Usp. 31 730)
- [2] Levitin R Z and Markosyan A S 1990 J. Magn. Magn. Mater. 84 247
- [3] Fournier J M and Gratz E 1993 Handbook on the Physics and Chemistry of Rare Earths vol 17, ed K A Gschneidner Jr, L Eyring, G H Lander and G R Choppin (Amsterdam: North-Holland) ch 115, p 409
- [4] Goto T, Sakakibara T, Murata K, Komatsu H and Fukamichi K 1990 J. Magn. Magn. Mater. 90&91 700
- [5] Bloch D, Edwards D M, Shimizu M and Voiron J 1975 J. Phys. F: Met. Phys. 5 1217
- [6] Yamaguchi M, Futakata T, Yamamoto I and Goto T 1992 J. Magn. Magn. Mater. 104 731
- [7] Gratz E 1983 Solid State Commun. 48 825
- [8] Barbara B, Giraid J P, Laforest J, Lemaire R, Siaud E and Schweizer J 1977 Physica B 86-88 155
- [9] Clarke A E, Abbundi R and Gilmor W P 1978 IEEE Trans. Magn. MAG-14 542
- [10] Clarke A E 1979 Handbook on the Physics and Chemistry of Rare Earths vol 2, ed K A Gschneider Jr and L Eyring (Amsterdam: North-Holland) ch 15, p 231
- [11] Levitin R Z, Markosyan A S and Snegirev V V 1982 Piz. Zh. Eksp. Teor. Fiz. 36 367 (Engl. Transl. 1982 JETP Lett. 36 745)
- [12] Baranov N, Gratz E, Nowotny H, and Steiner W 1983 J. Magn. Magn. Mater. 37 206

- [13] Gignoux D and Givord F 1979 J. Phys. F: Met. Phys. 9 1409
- [14] Gignoux D, Givord F and Schweizer J 1977 J. Phys. F: Met. Phys. 7 1823
- [15] Gignoux D, Givord F and Koehler W C 1977 Physica B 86-88 165
- [16] Gignoux D, Givord F, Perrier de la Bathie R and Sayetat F 1979 J. Phys. F: Met. Phys. 9 763
- [17] Hendy P and Lee E W 1978 Phys. Status Solidi a 50 101
- [18] Gignoux D, Givord F and Lemaire R 1975 Phys. Rev. B 12 3878
- [19] Rubinstein M, Lubitz P and Koon N C 1981 J. Magn. Magn. Mater. 24 288
- [20] Aleksandryan V V, Baranov N V, Kozlov A I and Markosyan A S 1988 Fiz. Met. Metalloved. 66 682 (Engl. Transl. 1988 Phys. Met. Metallogr. 66 50)
- [21] Muraoka Y, Okuda H, Shiga M and Nakamura Y 1984 J. Phys. Soc. Japan 53 1453
- [22] Ballou R, Markosyan A S, Dubenko I S and Levitin R Z 1992 J. Magn. Magn. Mater. 110 209
- [23] Burzo E and Lazar D P 1976 J. Solid State Chem. 16 2571
- [24] Yoshida H, Kaneko T, Abe S, Komatsu T, Kido G and Nakagawa Y 1992 Physica B 177 247
- [25] Duc N H 1991 Phys. Status Solidi b 164 545
- [26] Duc N H, Hien T D, Givord D, Franse J J M and de Boer F R 1993 J. Magn. Magn. Mater. 124 305
- [27] Franse J J M and Radwanski R J 1993 Handbook of Magnetic Materials vol 7, ed K H J Buschow (Amsterdam: North-Holland) p 307-501
- [28] Ballou R, Gamishidze Z M, Lemaire R, Levitin R Z, Markosyan A S and Snegirev V V 1993 J. Magn. Magn. Mater. 118 159
- [29] Goto T et al 1994 at press
- [30] Brommer P E, Dubenko I S, Franse J J M, Levitin R Z, Markosyan A S, Radwanski R J, Snegirev V V and Sokolov A Yu 1993 Physica B 183 363
- [31] Dubenko I S et al 1994 at press
- [32] Tsuya N, Clark A E and Bozorth R 1965 Proc. Int. Conf. on Magnetism (Nottingham, 1964) p 250
- [33] Korolev A V, Mushnikov N V, Andreev A V and Gaviko V S 1990 Fiz. Met. Metallovd. 69 92 (Engl. Transl. 1990 Phys. Met. Metallogr. 69 88)